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Abstract

Scene-aware dialogue systems are designed to have conver-
sations about surrounding objects and events. We approach
this challenge by building an end-to-end multimodal dialogue
system with video (non-audio) and chat history as the context
with novel ways of grounding through effective alignment
and cross-attention approaches. For this, we use the Audio
Visual Scene-Aware Dialog (AVSD) dataset to evaluate the
performance of our models and also study the importance of
each of the modality and component to the overall perfor-
mance of our multimodal dialogue models. This achieves the
third-rank system in the competition. Further, we also dis-
cuss the various other approaches that we tried to improve
the performance of our models, e.g., reinforcement learning,
contextual embeddings, pointer-generator copy models, and
external data.

1 Introduction
Building end-to-end scene-aware dialogue systems is an im-
portant step in enabling the grounding of objects and events
for having natural conversations with robots in a collabora-
tive environment. To enable such interactions, systems need
to understand both dynamic visual scenes and the natural
language inputs. Such systems play a crucial role in the ap-
plications of virtual assistants, intelligent tutoring, and hu-
man robot collaboration.

In the direction of grounding, previous works have ex-
plored the translation of visual information in the form of
image/video captioning (Karpathy and Fei-Fei 2015; Xu et
al. 2015; Venugopalan et al. 2015; Pasunuru and Bansal
2017a), image/video question answering and reasoning (An-
tol et al. 2015; Jang et al. 2017; Lei et al. 2018). Also, recent
works have explored the visual context in dialogue systems
in the form of static-image based context (Das et al. 2017;
Mostafazadeh et al. 2017; de Vries et al. 2017). Very re-
cently, Pasunuru and Bansal (2018) introduced game-based
video context dialogue with multi-speaker dialogue. Intro-
ducing video and audio context for dialogue systems, audio
visual scene-aware dialog (AVSD) was proposed by Alamri
et al. (2018) (see Fig. 1 for an example). In this work, we
propose end-to-end neural network based multimodal video
context dialogue models for this AVSD dataset.
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Several end-to-end neural network based models have
been explored for dialogue systems with textual, speech,
gaze, and gesture as context (Lowe et al. 2015; Serban et al.
2016; Johnston et al. 2002; Cassell 1999). At the same time,
different multimodal end-to-end dialogue models were de-
veloped in the domain of image-based visual question and
answering type dialogue (Das et al. 2017). However, models
for video-based context are less explored. To this end, we
present a multimodal-context (video and chat history) based
question-answering-style dialogue model exploring the re-
cent AVSD dataset. In this work, we primarily focus on en-
coding and aligning multiple modalities (video, chat history,
and summary, but no audio) w.r.t. the given question. For
this, we propose a dual attention mechanism, where we use
cross-modality attention to better align different video and
question modalities and as well use general attention at the
answer decoder to allow the model to attend to important
parts of each of the modalities to answer the given question.

In our empirical studies, we found that video and chat his-
tory modalities are both important for improving the per-
formance of the question answering based multimodal di-
alogue model. Also, we use the summary information to
further improve the results. We show that cross-modality
attention improves the results showing that it is important
to align the modalities (video and question) to answer the
question. Further, we also experimented with various other
advanced techniques such as reinforcement learning based
policy gradient approach with task-specific rewards, adding
contextual word embedding representations (ELMo), using
additional external data, as well as joint pointer-generator
models. However, these methods did not perform well with
the AVSD dataset. We describe each of these approaches and
discuss the possible reasons for their lack of impact on the
model performance.

2 Related Work
It is important for grounding objects and events to en-
able human-robot interactions. Several previous works have
explored the visual domain (both image and video) for
translation, question answering, and summarization using
deep neural network models (Venugopalan et al. 2015;
Pasunuru and Bansal 2017a; Antol et al. 2015; Lei et al.
2018; Yu, Bansal, and Berg 2017). Recently, some previous
works have extended this for question answering based di-



sentences. We will use nlg-eval2 for objective evalua-
tion of system outputs.

2.2. Data collection

We are collecting text-based human dialog data for
videos from human action recognition datasets such as
CHARADES3 and Kinetics4. We have already collected
text-based dialog data about short videos from CHA-
RADES [8], which contains untrimmed and multi-action
videos, along with video descriptions.

The data collection paradigm for dialogs was similar to
that described in [2], in which for each image, two different
Amazon Mechanical Turk (AMT) workers chatted via a text
interface to yield a dialog. In [2], each dialog consisted of a
sequence of questions and answers about an image. In our
dataset, two AMT workers had a discussion about events in
a video. One of the workers played the role of an answerer
who had already watched the video. The answerer answered
questions asked by another AMT worker, the questioner.

The questioner was not shown the video but was only
shown three static images: the first, middle and last frames
of the video. Having seen static frames from the video, the
questioner already has good information about image- and
appearance-based information in the video. Thus, rather
than focusing on scene information that is available in the
static images, the dialog instead revolves around the events
and other temporal features in the video, which is the con-
tent of interest for our AVSD dataset. After 10 rounds of
Q/A about the events that happened in the video, the ques-
tioner (who has not seen the video) is required to write a
video description summarizing the events in the video.

In total, we have collected dialogs for 7043 videos from
the CHARADES training set plus 1465 videos from the val-
idation set. See Table 1 for statistics.

Table 1. Audio Visual Scene-Aware Dialog Dataset on CHARADES.
Since we did not have scripts for the test set, we split the validation set
into 732 and 733 videos and use them as our validation and test sets, re-
spectively.

training validation test
# of dialogs 7043 732 733
# of turns 123,480 14,680 14,660
# of words 1,163,969 138,314 138,790

3. Summary
We introduce a new challenge task and dataset—Audio

Visual Scene-Aware Dialog (AVSD)—that form the basis of
one track of the 7th Dialog System Technology Challenges
(DSTC7) workshop. We collected human dialog data for

2https://github.com/Maluuba/nlg-eval
3http://allenai.org/plato/charades/
4https://deepmind.com/research/open-source/open-source-

datasets/kinetics/

Figure 1. A sample from our Audio Visual Scene-Aware Dialog
(AVSD) dataset. The task of Scene-aware Dialog requires an agent
to generate a meaningful response about a video in the context of
the dialog.

videos from the CHARADES dataset and plan to collect
more for videos from the Kinetics dataset. The information
provided to participants will include a detailed description
of the baseline system, instructions for submitting results
for evaluation, and details of the evaluation scheme.
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Person A (Questioner)

Person B (Answerer)

1.   How many people are in the video?
2.   Is he speaking with anyone?
3.   What room is he in?
4.   What is the man doing?
5.   Does he start the video in the hallway?
6.   Where does he put the tie and shirt?
7.   Does he leave the hallway?
8.   Does he open the closet door?
9.   Can you tell what he grabs from the closet?
10. Is there anything else I should know?

1.   There is only one man in the video
2. No there is no sound
3. He is in a hallway
4. He is taking off his tie and shirt
5. Yes he does start in the hallway
6. He puts it in a closet
7. After he puts his stuff in the closet he grabs 

something out of the closet
8. No it is already open
9. He grabs a box and then starts walking 

toward the camera
10. No that is it from start to finish

Figure 1: A sample from the DSTC7-AVSD dataset.

alogue systems (Das et al. 2017; Mostafazadeh et al. 2017;
de Vries et al. 2017). Recently, Pasunuru and Bansal (2018)
introduced game-based video-context dialogue systems with
multiple speaker interactions. However, there is a very little
work in terms of using video-based multimodal information
for this question answering based dialogue systems. To this
end, a very recent work has introduced audio-visual scene-
aware dialog dataset (Alamri et al. 2018), and our focus is
on developing better models for this dataset.

It has been shown that attention plays an important role
in improving the performance of end-to-end sequence-to-
sequence based models for several tasks, e.g., machine trans-
lation, summarization, video captioning, etc. (Xu et al. 2015;
Sutskever, Vinyals, and Le 2014). Also, previous work has
shown that cross-modality attention is important for im-
proving question answering based tasks, for example, read-
ing comprehension, visual reasoning, and question answer-

ing (Seo et al. 2017; Tan and Bansal 2018). In this work, we
use both the general attention and cross-modality attention
for scene-aware dialogue and show that both are important
for improving the performance of the model.

3 Models
In this section, we describe our various modeling approaches
for the multimodal question and answering based dialogue
systems. We will first introduce the task of video dia-
logue (AVSD). Next, we will present our basic sequence-to-
sequence model where the answer decoder attends to mul-
tiple encoders at the same time. Later, we incorporate the
cross-attention mechanism to align different modalities for
better performance.

Task Formulation Let the video be represented as v and
the corresponding frames in the video be {f1, . . . , fm},
where m is the number of frames. The question is repre-
sented with a sequence of words by q = {wq1, . . . , wqn}, and
a = {wa1 , . . . , wap} is the generated answer, where n and
p are the sentence lengths of question and answer, respec-
tively. Let b = {wb1, . . . , wbr} be the summary sequence with
length r. The task is to generate the answer a for the given
question q using one or more modalities/information from
video (v), chat history ({qi, ai}), and summary (b). Next, we
describe the models for these various choices and combina-
tion of these modalities/information.

3.1 Seq2Seq with Attention Model
First, we describe the sequence-to-sequence (seq2seq)
model with attention mechanism which is further used to
fuse multiple modalities together to generate an answer for
the given question. We use the standard seq2seq model sim-
ilar to the standard machine translation encoder-decoder
RNN model (Bahdanau, Cho, and Bengio 2015), where the
RNN is based on Long Short-Term Memory (LSTM) units,
which are good at memorizing long sequences due to forget-
style gates. Let x = {x1, x2, ..., xm} be the input sequence
and y = {y1, y2, ..., yn} be the target sequence. The con-
ditional probability of the target sequence given the input
sequence is parameterized with the chain rule:

P (y|x; θ) =
n∏
t=1

p(yt|y1:t−1, x; θ) (1)

where θ denotes the model parameters. At each time step
t, the decoder LSTM hidden state st is a non-linear recur-
rent function of the previous decoder hidden state st−1, the
previous time-steps generated token yt−1, and the context
vector ct, which is defined as follows:

st = f(st−1, yt−1, ct) (2)

where ct is the weighted sum of the encoder hidden states
{ht}m:

ct =

m∑
i=i

αt,ihi (3)



Question Encoder Video Encoder Chat-History Encoder Summary Encoder

LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM

LSTM LSTM LSTM

What room is he in?

Q: How many people are 
      in the video?
A: There is only one man 
      in the video
Q: Is he speaking with 
     anyone?
A: No there is no sound

There is a person walking
in the hallway. He take off 
his tie and shirt and put it 
in the closet. He then grabs
a box from the closet and 
starts walking to the camera.

He is in a hallway

Answer Decoder

S
im

ila
rit

y 
m

at
rix

Cross Attention

Figure 2: End-to-end multimodal dialogue model with video, summary, chat history, and question encoders (with cross-attention
between question and video encoders).

These attention weights {αt,i} are computed as follow-
ing:

αt,i =
exp (et,i)∑m
k=1 exp (et,k)

(4)

where the attention function is defined as follows:

et,i = V Ta tanh(Wahi + Uast−1 + ba) (5)

where Va, Wa, Ua, and ba are the trainable model param-
eters.

Video-based Model In this simpler model, we only use
two encoders, one for the question encoding and another for
the video encoding.1 Next, we use two attention mechanisms
(as described in the above section), one for the question and
another for the video to allow the decoder separately attend
to each of these encoders. At time step t of the decoder, let
cvt and cqt be the context vectors from video and question en-
coders, respectively, then we concatenate these two vectors
along with the embedding representation of the previously
generated word and give it as input to the current time step
of the answer decoder.

1Note that we only use the visual information from the video in
our work, i.e., we do not use the audio information, which we will
pursue in future work.

Video- and Chat History-based Model Chat history in-
formation contains the co-referencing and other useful infor-
mation to answer the current question. Hence, additionally,
we further add the chat history information to the model as
another separate LSTM (see Fig. 2), where we also consider
the attention from the chat history encoder along with the
video and question encoder attention. Let cvt , cht , and cqt be
the context vectors from video, chat history, and question
encoders respectively at time step t for the decoder, where
we concatenate all these vectors along with the embedding
representation of the previously generated word and give it
as input to the current time step of the decoder.

Additional Summary-based Model The AVSD dataset
also provides the text summary of the video. Some of the
answers might already be available from this summary in-
formation. Hence, we also use the summary information by
encoding it through a separate LSTM, and concatenate its
context vector cbt with the context vectors of video, chat his-
tory, and question, along with the embedding representation
of the previously generated work and give it as input to the
answer decoder.

3.2 Cross-Attention Model
In order to learn a strong joint-aligned space between the
video modality and the question, so has to only focus on
video frames relevant to the question, we use bidirectional
attention mechanism between video context and the ques-



Model METEOR CIDEr BLEU-4 ROUGE-L
Video Only 12.43 95.54 8.83 34.23
Video + Chat History 14.13 105.39 10.58 36.54
Video + Chat History + Summary 14.94 112.80 11.22 37.53
Video + Chat History + Summary + Cross-attention 14.95 115.82 11.38 37.87

Table 1: Our models’ performance on AVSD dataset’s public test set. All of these models use the question information.

tion, following the previous work from reading comprehen-
sion (Seo et al. 2017). Let hvi and hqj represent the video
encoder and question encoder hidden state representations
at time steps i and j respectively. The bidirectional attention
mechanism is based on a similarity score which is defined as
follows:

S
(v,q)
i,j = wTs [h

v
i ;h

q
j ;h

v
i � h

q
j ] (6)

where ws is a trainable parameter, [x; y] represents concate-
nation, and � represents the element-wise product. The at-
tention distribution from question to video context is defined
as αi: = softmax(Si:), hence the question-to-video con-
text vector is defined as cv←qi =

∑
j αi,jh

q
j . Similarly, the

attention distribution from the video context to question is
defined as βj: = softmax(S:j), and the video to question
context vector is defined as cq←vj =

∑
i βj,ih

v
i . Finally, we

concatenate the hidden state and the corresponding context
vector from the two modalities. ĥvi = [hvi ; c

v←q
i ] is the fi-

nal hidden state representation for the video encoder. Simi-
larly, ĥqj = [hqj ; c

q←v
j ] is the final hidden state representation

for the question encoder. Let ĉvt and ĉqt be the new context
vectors based on general attention from video and question
encoders, respectively, at time step t of the decoder. Finally,
we concatenate the context vectors from video (ĉvt ), question
(ĉqt ), chat history (cht ), and summary (cbt), along with the em-
bedding representation of the previously generated word and
give it as input to the current time step of the decoder.

4 Results
4.1 Experimental Setup
Dataset We use Audio Visual Scene-Aware Dialog
(AVSD) dataset (Alamri et al. 2018) for our video and chat
context based question answering dialogue systems, where
we use the visual and text features but not the audio features.
This dataset has 11,156 dialogues, out of which 7,659 are
used for training, 1,787 are used for validation, and 1,710
are used for testing. We use this official split as described
above in all our experiments.

Evaluation Metrics For evaluation of our models, we use
four diverse automatic evaluation metrics that are popular
for image/video captioning and language generation in gen-
eral: METEOR (Denkowski and Lavie 2014), BLEU-4 (Pa-
pineni et al. 2002), CIDEr-D (Vedantam, Lawrence Zitnick,
and Parikh 2015), and ROUGE-L (Lin 2004). We use the
standard evaluation toolkit (Chen et al. 2015) to obtain these
four metrics. The AVSD dataset challenge also uses these
four automatic metrics for the evaluation.

Training Details All training parameters are tuned on the
validation set. We use a learning rate of 0.0001 with Adam
optimizer (Kingma and Ba 2015). For video context, we un-
roll the encoder LSTM to a maximum of 400 time steps.
We use a maximum of 200 time steps for the chat history
encoder and 50 time steps for both question encoder and an-
swer decoder. We use a batch size of 16. We use LSTM hid-
den size of 1024 dimension and word embedding size of 512
dimension. We use a vocabulary size of 5,398, replacing the
less frequent words with UNK token. We clip the gradient to
a maximum absolute value of 10.0. We apply a dropout with
a probability of 0.5 to the vertical connections in LSTM.

4.2 Empirical Results
Video-only Context First, we performed experiments
studying the importance of using only video information
without any chat history for answering the given question.
Table 1 shows that the performance of this model on various
automatic evaluation metrics. For the rest of this section, we
consider this model as baseline reference and show improve-
ments to the model upon adding more modalities/contexts.

Chat History Context Next, we add the chat history con-
text along with the video information to the question answer-
ing model enabling us to create a dialogue style model. Here,
we encode the previous questions and answers as a single
long sequence and encode with an LSTM-RNN. From Ta-
ble 1, it is clear that adding the chat context significantly
improves the performance of the model w.r.t. the baseline,
showing that chat context is important in answering the
questions.

Summary Context Also, given the summary context of
the video, it might already have the answer to the given ques-
tion. In such a scenario, using this information will be very
helpful. We observe that using the summary context helps
the model to perform better (see Table 1).

Cross-Attention Model Finally, we also consider the
cross-attention between the video context and the ques-
tion, because it is important to focus on the salient parts of
the video which are relevant and useful for answering the
given question. We model the cross-attention as described
in Sec. 3.2 between the video context and question, and the
results are as shown in Table 1. This result suggests that
cross-attention plays an important role in aligning the video
context with the given question.



4.3 Our Other Approaches and Analysis
Apart from the current approaches that we discussed above,
we also experimented with various other techniques such
as reinforcement learning based policy gradient approach,
adding contextual embedding representations (ELMo), us-
ing external data, and pointer-generator model. For the rest
of this section, we describe each of these approaches and
discuss the possible reasons for their low impact on results.

Reinforcement Learning with Policy Gradient Rewards
Policy gradient approaches allows us to directly optimize the
model on the evaluation metrics instead of the cross-entropy
loss, and has shown promising improvement in a num-
ber of generation tasks like machine translation, summa-
rization, and image/video captioning (Ranzato et al. 2016;
Paulus, Xiong, and Socher 2017; Rennie et al. 2016; Pa-
sunuru and Bansal 2017b). In order to directly optimize the
sentence-level test metrics (e.g, CIDEr), we use policy gra-
dient approach, where our cross-entropy baseline model acts
as an agent and interacts with the environment and samples
a word at each time step of the decoder, thus forming an
answer. At the end of this answer generation, we achieve a
reward for this answer w.r.t. the reference answer. Our train-
ing objective is to minimize the negative expectation of this
reward, which is defined as follows:

L(θ) = −Ews∼pθ [r(ws)] (7)
where ws is the word sequence sampled from the model.

For this, we use the REINFORCE algorithm (Williams
1992) where the gradients of this non-differentiable reward-
based loss function are:

∇θL(θ) = −Ews∼pθ [r(ws) · ∇θ log pθ(ws)] (8)
We approximate the above gradients via a single sampled
word sequence (Ranzato et al. 2016).

In our experiments, we tested with various automatic
evaluation metrics (CIDEr, ROUGE-L, and BLEU) as re-
ward functions.2 Unlike the video/image captioning datasets
(MSR-VTT (Xu et al. 2016) and MS-COCO (Lin et al.
2014)) which have multiple references, here we are limited
to a single answer for each question and hence the reward
is noisy. We observe that ROUGE-L is relatively a better
choice for the reinforcement learning approach. However,
overall, we did not see much improvement with the RL ap-
proach and also readability of the answers went down.3 The
possible reason for these negative results are due to the na-
ture of the dataset and the answers, since most of the an-
swers in this dataset are yes/no type and flipping these words
during the RL exploration do not bring much change in the
phrase-matching metrics but visually its confusing to the
model. Further, we explored these yes/no type questions by
giving a reward of 1 when the reference answer and the gen-
erated answer are both positive (yes type) or both negative
(no type), and a reward of 0 in all other cases.

2We did not try the METEOR as a reward, because METEOR
calculation is very slow and hence the RL training process will be
very slow.

3Note that we also tried the mixed cross-entropy and reinforce
loss for better language modeling and fluency.

Contextualized ELMo Word Embeddings We also ex-
perimented with the deep contextualized words representa-
tions (ELMo) (Peters et al. 2018). First, we get the ELMo
embeddings for the chat history, summary and question.
Next, we use these embedding representations as input to
their respective encoders. We did not see any improvement
in the results, probably because our models on this video-
chat dataset might not need this extra information or might
have a mismatch with it.

Using External Data We also further experimented with
using external data. We used the MSR-VTT (Xu et al. 2016)
video captioning dataset, where given the video with no
question, we want to generate the caption (otherwise an-
swer). However, this approach also did not improve the over-
all performance of our final model. Again, the possible rea-
son for this might be because of the different domains of
these two datasets (MSR-VTT versus AVSD), or the fact
that the MSR-VTT dataset is not a question-answer setup,
or we may not have matched the exact sampling or I3D vi-
sual feature extraction setup of the AVSD data.

Pointer-Generator Copy Model Pointer mecha-
nism (Vinyals, Fortunato, and Jaitly 2015) allows to
directly copy the words from the input sequence (such as
chat history or summary or question) during the answer
generation. Pointer generator is a good fit to the AVSD
dataset because lot of words in the question can also be
present in the answer. For this pointer mechanism, we
follow See, Liu, and Manning (2017), where we use a soft
switch based on the generation probability pg:

pg = σ(Wgct + Ugst +Wgewt−1 + bg) (9)
where σ(·) is a sigmoid function, and Wg , Ug , Vg , and bg

are trainable parameters. Here, ewt−1 is the previous time
step output word embedding. The final word distribution is
a weighted combination of the vocab distribution and atten-
tion distribution, where the weight is based on pg . In our
experiments, question-based pointer generator did not im-
prove the performance of our final model. We also tried
joint pointer from question and summary, since the answer
is usually a combination of the question words and an an-
swer word from the summary. This performed better than the
question-based pointer, but not over the non-pointer model.
This is probably because of our strong dual attention mech-
anism and also omitting the less frequent words during the
training.

In future work, we plan to further analyze and improve
these promising approaches with specific RL rewards, con-
textualized large language models, and joint copy models.

5 Conclusion
We presented an end-to-end multimodal dialogue system
with dual attention (general attention and cross-attention).
We showed the usefulness of each of the modalities for im-
proving the model performance. We further discussed vari-
ous other approaches for improving the performance of the
model and the possible reasons for their negative results.
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