Dynamic Memory Networks for Dialogue Topic Tracking

Seokhwan Kim
Adobe Research
San Jose, CA, USA
seokim@adobe.com

Abstract
Dialogue topic tracking aims at identifying the topic states in on-going multi-topic conversations. This paper proposes dynamic memory networks for dialogue topic tracking to learn the context states of conversations represented by multiple memory slots. The slot values are managed by the gated recurrent architectures with the update and reset gates considering cross-slot interactions. The experimental results show that our proposed models significantly improved both the sequential labelling and segmentation performances in topic tracking of human-human conversations in comparison to the other neural network baselines.

Introduction
Recent advancements in artificial intelligence have contributed to closing the gap between the technologies and their uses in our daily life. One of the practical successes is that natural language dialogues have been used as a means of human machine interface implemented in many consumer devices. However, the current dialogue systems still have limited capabilities of conducting a coherent conversation across multiple different topics, which is generally taken for granted in human conversations.

Dialogue topic tracking is a sub-task of dialogue state tracking focusing on the topic-related states in an on-going multi-topic conversation. While many previous studies on multi-topic dialogue processing aimed at directly building dialogue system components for topic categorization (Lin, Wang, and Lee 1999; Nakata, Ando, and Okumura 2002; Lagus and Kuusisto 2002; Adams and Martell 2008; Ikeda et al. 2008; Celikyilmaz, Hakkani-Tür, and Tür 2011) or dialogue flow management (Bohus and Rudnicky 2003; Roy and Subramaniam 2006; Lee, Jung, and Lee 2008) in human-machine conversations, recent studies (Morchid et al. 2014a; 2014b; Esteve et al. 2015; Kim, Banchs, and Li 2016) have addressed this problem on human-human conversations as part of the efforts in understanding human behaviors in dealing with multiple topics.

In our prior work (Kim, Banchs, and Li 2016), dialogue topic tracking was formulated as an utterance-level sequential labelling problem and proposed various neural network architectures including convolutional and recurrent neural networks on it. We reported that the local features captured by the convolutional architectures led to significant improvements of the topic tracking performances. On the other hand, the temporal contexts modelled by the recurrent networks only showed a marginal effect.

In this paper, we propose dynamic memory networks for dialogue topic tracking towards better representation of dialogue contexts compared to the neural network architectures in the prior work. Our models represent the latent dialogue state at each given time step as a set of read-writable memory slots, inspired by the neural memory models (Graves, Wayne, and Danihelka 2014; Graves et al. 2016; Henaff et al. 2016). Each memory slot is updated through a given dialogue sequence by the content-based operations in gated recurrent networks.

Unlike the single gating mechanism in the previous memory networks, we propose an additional reset gate to explicitly filter out any outdated context from the state representation. Additionally, the cross-slot interactions are newly introduced into both the update and reset gates in order to overcome the limitations of the distributed architectures due to the lack of consideration of any correlation between different memory slots.

In the remainder of this paper, we present a problem definition of dialog topic tracking and describe our dynamic memory network models for this problem. Then, the evaluation results of the models are reported followed by the conclusions.

Dialogue Topic Tracking
Following our prior work (Kim, Banchs, and Li 2016), we define dialogue topic tracking as a multi-class classification problem at each time step in a given dialogue to predict the label encoded in B/I/O tagging scheme (Ramshaw and Marcus 1995) as follows:

\[
 f(t) = \begin{cases}
 B-\{c \in C\} & \text{if } u_t \text{ is at the beginning of a segment belongs to } c, \\
 I-\{c \in C\} & \text{else if } u_t \text{ is inside a segment belongs to } c, \\
 O & \text{otherwise},
 \end{cases}
\]

where \(u_t \) is the utterance at the \(t \)-th time step in a given dialogue session and \(C \) is a closed set of topic categories.
This architecture represents a sentence of n words as an $n \times k$ matrix by concatenating the vectors each of which
is the k-dimensional word embedding $\vec{x}_i \in \mathbb{R}^k$ representing the i-th word in the sentence. Then, a filter $F \in \mathbb{R}^{k \times m}$ with the same width k as the input matrix and a given height m generates the following convolutional feature at the i-th position:

$$c_i = \sigma (F \cdot \vec{x}_{c,i+m-1} + b),$$

where $\vec{x}_{c,i,j}$ is the sub-region from the i-th row to the j-th row in the input, $b \in \mathbb{R}$ is a bias term, and σ is a non-linear activation function such as rectified linear units. A series of convolution operations sliding over the first row to the $(m + n - 1)$-th row of the input matrix produces a feature map $\vec{c} = [c_1 \cdots c_{n-m+1}] \in \mathbb{R}^{n-m+1}$ for the filter F. Then, the maximum element $c' = \max(\vec{c})$ is selected from each feature map considered as the most important feature for the particular filter in the max-pooling layer.

The CNN model for dialogue topic tracking (Figure 2) takes an input instance at a given time step t with the following three sentences: u_t, u_{t-1}, and $u_{t-w+1:t-2}$ which denote the current utterance, the previous utterance, and the concatenation of the other utterances within w time step in the dialogue history, respectively. Both the convolution and the max-pooling operations are applied to each individual sentence separately from the others. But the same filters are generally invariant to where it is originally located in a given sentence. The same approach for $u_{t-w+1:t-2}$. On the other hand, has a high chance of acting as a bottleneck in modeling dialogue histories properly. Because most contextual and temporal information is lost at the very beginning of the whole procedure by concatenating all the history utterances into the flat input representation, which is inevitable and irreversible caused by the nature of this static architecture.

Recurrent Convolutional Networks

To make use of the sequential dependencies between utterances in learning dialogue contexts, we propose a recurrent convolutional neural network (RCNN) architecture for dialogue topic tracking. This model (Figure 3) also takes the utterance sequence from $u_{t-w+1} \rightarrow u_{t}$ as the input at the time step t. As in the CNN model, each utterance u_i in the sequence is individually represented by the l-dimensional vector $\vec{u}_i \in \mathbb{R}^l$ generated through the embedding, convolution, and max pooling operations, where l is the total number of filters in the convolutional layer. Then, the vectors from \vec{u}_{t-w+1} to \vec{u}_{t} are connected in a recurrent neural network (RNN) layer, where temporal contexts are learned by recurrent computations applied to every time step in chronological order.

When a vanilla RNN unit constitutes the recurrent layer, its hidden states are updated by the operation $h_i = \sigma(W \vec{u}_i + U h_{i-1})$, where h_i is the state at the i-th time step, and W and U are the trainable parameters which are shared across all the time steps. For better handling of any potential long-term dependencies in dialogue sequences, a gated architecture such as the long short-term memories (LSTMs) (Hochreiter and Schmidhuber 1997) and gated recurrent units (GRU) (Cho et al. 2014) may be preferred rather than the vanilla unit. Our gated implementation of RCNN uses GRU which has the following state updating mechanism:

\begin{align}
 h_i &= z_i \odot h_{i-1} + (1 - z_i) \odot \tilde{h}_i, \quad (3) \\
 \tilde{h}_i &= \tanh (W_h \vec{u}_i + U_h (r_i \odot h_{i-1})), \quad (4)
\end{align}

where z_i and r_i are the signal vectors for the update and reset gates, respectively, which are defined as follows:

\begin{align}
 z_i &= \sigma (W_z \vec{u}_i + U_z h_{i-1}), \quad (5) \\
 r_i &= \sigma (W_r \vec{u}_i + U_r h_{i-1}). \quad (6)
\end{align}
Intuitively, the update gate determines how much of the previous information is reflected in the current state and the reset gate indicates what part of the previous state is relevant to the updated state. Both gates share the same formula, but have the different parameters \((W_z, U_z)\) and \((W_r, U_r)\) trained separately from each other.

After the recurrent operations, the final hidden state \(h_t\) at the end of a given input sequence is passed to the fully-connected prediction layer. It corresponds to the dialogue history features in this architecture and replaces the concatenated ones on \(u_{t-w+1:t-2}\) by the CNN architecture. But the other local features \(\tilde{u}_t\) and \(\tilde{u}_{t-1}\) still come directly from the CNNs, which is common in both architectures.

Dynamic Memory Networks

Understanding human conversations with multiple topics contains the problem of tracing back to somewhere remote in dialogue history with regard to each subject in focus. For example, the topic transition at \(t = 11\) in Figure 1 doesn’t initiate a whole new subject, but just resumes the one that has already discussed by \(t = 5\).

To incorporate the subject-specific long-term dependencies into dialogue topic tracking, we propose dynamic memory networks (Figure 4) to generate the dialogue history features as the recurrent architecture does in RCNN. The networks maintain a set of multiple memory slots each of which encodes the latent representation corresponding to an important subject on the domain of conversation. These memories are updated by recurrent operations going through a given sequence of utterance vectors. In this section, we present three different types of memory units in our proposed dynamic networks and compare them focusing on their gating mechanisms.

Memory with a single gate The first memory unit (Figure 5a) has a single gate function to update the hidden state of each memory slot, as follows:

\[
z^j_i = \sigma \left(\tilde{u}^j_i w^j + \tilde{h}^j_{i-1} \right),
\]

where \(z^j_i\) is a gate function for the \(j\)-th memory slot at the \(i\)-th time step, \(w^j\) is a trainable key vector, \(\tilde{h}^j_i\) is a candidate state, and the parameters \(U, V\) are shared across all the slots. The gate function \(z^j_i\) is controlled by two terms \(\tilde{u}^j_i w^j\) and \(\tilde{h}^j_{i-1}\) which correspond to the matchings from the input \(\tilde{u}_i\) to the key vector \(w^j\) and the previous slot state \(\tilde{h}^j_{i-1}\), respectively.

This architecture is inspired by recurrent entity networks (Hernaff et al. 2016) which achieved the state-of-the-art performances in question answering tasks. It also used a single gate function activated with the content-based matchings and maintains the long-term memory for each slot updated independently from the others in parallel.

Memory with update and reset gates While the memory network for question answering aims at referring to the answer of a given question from the past, our dynamic models for dialogue topic tracking learns the state representation at each moment of a given conversation. A distinct difference in solving the problems is that the outdated information needs to be filtered out from the topic tracking memories to keep the current state up to date. For example, the item suggested at \(t = 3\) in Figure 1 has been immediately denied at \(t = 4\), which would have a low probability of being discussed again in the same conversation. But the single gate architecture has a possibility that the outdated content remains somewhere in the memories, while the corresponding slots are not being updated with any new information.

To overcome this limitation, we propose another memory architecture (Figure 5b) with an additional reset gate defined as follows:

\[
r^j_i = \sigma \left(\tilde{u}^j_i W_r w^j + \tilde{h}^j_{i-1} U_r h^j_{i-1} \right),
\]

where \(W_r\) and \(U_r\) are the transform parameters to the same addressing terms \(\tilde{u}^j_i w^j\) and \(\tilde{h}^j_{i-1}\) as in the update gate \(z^j_i\). This reset gate is applied to the new candidate state as follows:

\[
h^j_i = \tanh \left(U \left(r^j_i \circ h^j_{i-1} \right) + V w^j + W \tilde{u}_i \right),
\]

which is similar to GRU’s reset gate usage.

Memory with cross-slot interactions The motivation of our final architecture comes from the hypothesis that any state update for a topic would affect also to the other topic states in dialogue context modelling. For example, in Figure 1, the attraction name is mentioned explicitly only in the earlier part of the conversation \((t = 5)\) and another but related topic on ‘transportation’ is discussed in the following segment. We believe that a good tracker is supposed to keep the representation corresponding to this attraction until the conversation topic returns to the same subject again at \(t = 11\). But it has to be phased out from \(t = 13\), since the discussion about the particular attraction seems already finished according to the contexts in the new segment.
To incorporate this kind of correlations between different conversation subjects into the context representation with multiple memory slots, our model (Figure 5c) takes the cross-slot interactions by the following update and reset gate functions:

\[
 z^j_i = \sigma \left(\sum_k \left(\alpha^{kj}_z \tilde{u}^T_i w^k + \beta^{kj}_z \tilde{u}^T_i h_{i-1}^k \right) \right), \tag{12}
\]

\[
 r^j_i = \sigma \left(\sum_k \left(\alpha^{kj}_r \tilde{u}^T_i w^k + \beta^{kj}_r \tilde{u}^T_i h_{i-1}^k \right) \right), \tag{13}
\]

where \(\alpha^{kj}_z, \beta^{kj}_z, \alpha^{kj}_r, \beta^{kj}_r\) are the coefficients to learn the correlations between the \(j\)-th and the \(k\)-th memory slots in updating and resetting the memories. Different from the distributed architectures in the previous sections, the key vectors \([w^1 \cdots w^m]\), the hidden states \([h^1 \cdots h^m]\) and all the other parameters are shared in the concurrent update across all the memory slots.

Evaluation

Data

To demonstrate the effectiveness of our proposed models, we conducted experiments on TourSG corpus which is the benchmark dataset for the fourth dialogue state tracking challenge (DSTC4) (Kim et al. 2016). It consists of 35 dialogue sessions each of which was collected from the conversations between a tour guide and a tourist about planning a trip to Singapore. Every dialogue session has been manually transcribed and annotated with the labels including the segmentation boundaries and the topic category for each segment into one of the following eight classes: ‘attraction’, ‘transportation’, ‘food’, ‘accommodation’, ‘shopping’, ‘opening’, ‘closing’, and ‘other’. For our experiments, all these segment-level annotations were converted into the utterance-level B/I/O tags each of which belongs to one of 15 classes: \((\{B, I\} \times \{c : c \in C; \text{ and } c \neq \text{other}\}) \cup \{O\}\), where \(C\) consists of all the eight topic categories. We used the same partition of the dataset (Table 1) as in the dialogue state tracking task in DSTC4.

Models

Based on the dataset, we built six neural network models categorized into three architecture families: CNNs, RCNNs, and dynamic memories.

<table>
<thead>
<tr>
<th>Set</th>
<th># sessions</th>
<th># segments</th>
<th># utterances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train</td>
<td>14</td>
<td>2,104</td>
<td>12,759</td>
</tr>
<tr>
<td>Dev</td>
<td>6</td>
<td>700</td>
<td>4,812</td>
</tr>
<tr>
<td>Test</td>
<td>15</td>
<td>2,210</td>
<td>13,463</td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>5,014</td>
<td>31,034</td>
</tr>
</tbody>
</table>

Table 1: Statistics of TourSG dialogue corpus divided into three subsets for training, development, and test purposes.

The first baseline came from the CNN model which has achieved the best performances in our previous experiments (Kim, Banchs, and Li 2016) on the same dataset. In this model, the word embedding was initialized with the 300-dimensional word vectors pre-trained by word2vec (Mikolov et al. 2010) on 2.9M sentences from the 553k travel forum posts about Singapore. The convolutional layer learned 100 feature maps for each of three different filter sizes \([3, 4, 5]\) by sliding them over the current, the previous, and the history utterances within the window size \(w = 10\), which generated 900 feature values in total after the max-pooling operations. In addition, the speakers of the current and the previous utterances were introduced as extra features in the fully-connected layer.

Then, we compared two variants of the RCNN architecture using a vanilla RNN and a GRU as the unit in the recurrent layers. The hidden layer dimensions were 150 for the vanilla RNN and 50 for the GRU which were chosen by the grid search on the development set. The earlier parts of both models for the embedding, convolution, and max pooling operations have the same configurations and parameters with the CNN baseline.

Finally, three dynamic memory networks were trained based on the proposed gating mechanisms. The number of memory slots determined on the development set were \(m = 5\) for the first two distributed models and \(m = 10\) for the other with cross-slot interactions.

All the models were trained with Adam optimizer (Kingma and Ba 2014) by minimizing the categorical cross entropy loss on softmax. In the training phase, we used mini-batch size of 50 and applied dropout after the max pooling layer with the rate of 0.25 for regularization. We stopped training every model after 150 epochs where the performance of CNN baseline has been saturated.
with statistical significances, \(p < 0.01 \), but at the same time, worse in both RCNN models were evaluated as better in WindowDiff were not proven consistently enough for segmentation, since performances. But the benefits by the RCNN architecture adversely affected to the sequential labelling.

The boundary detection performances were evaluated with \(P \), \(R \), and \(F \)-measure (F) scores. We set the boundaries and count the number of windows with mismatched boundaries for computing the scores. We set the window size as \(k \) which is half of the average length of the reference segments in the test set.

Then, the statistical significance for each pair of models was computed using approximate randomization (Yeh 2000) for every metric.

Results

Table 2 compares the performances of the models trained on the combined data both from the training and development sets and evaluated on the test data set.

Comparing between two RCNN variants, the model with GRUs showed much better results than the other one using vanilla RNNs in all the metrics for both sequential labelling and segmentation. In addition, the GRUs in the recurrent layer also contributed to the significant improvement (\(p < 0.01 \)) from the CNN baseline in F-measure, while the vanilla RNNs adversely affected to the sequential labelling performances. But the benefits by the RCNN architecture were not proven consistently enough for segmentation, since both RCNN models were evaluated as better in WindowDiff, but at the same time, worse in \(P_k \) than the CNN baseline, with statistical significances, \(p < 0.001 \) and \(p < 0.01 \), respectively.

Whereas, our proposed dynamic memory networks demonstrated the impacts to the overall topic tracking performances not only for sequential labelling, but also for segmentation. All the three memory architectures achieved better scores than the CNN and RCNN models in F-measure and both segmentation metrics. Especially, each of the improvements in F-measure by the proposed models was statistically significant (\(p < 0.001 \)) from every baseline.

The first dynamic memory model with a single update gate produced the outcomes with a higher recall in sequential labelling than any other models in the evaluation also including the other two variants with dynamic memories. This enhanced coverage complemented its precision losses to get a higher score in F-measure, despite the even worse precision than the best RCNN model with GRU. The improvements in segmentation were also statistically significant at \(p < 0.05 \) except the one in \(P_k \) from the CNN baseline.

However, the additional reset gate introduced to the distributed architecture failed to make a distinctive contribution to the topic tracking performances. Although the second model with both the update and reset gates obtained slightly higher scores in F-measure and \(P_k \) than the single gate architecture, it caused loss in the segmentation performance measured by WindowDiff. But all these differences between two models were not statistically significant.

On the other hand, the results by our final model showed the effectiveness of the proposed architecture considering the cross-slot interactions for both updating and resetting memories. The model achieved the best performances against all the others in every metric except recall. Even for this exception, it had the second-best score in recall with no significant difference from the first one by the single-gated memories. All the improvements in F-measure by this model passed the statistical significance tests at \(p = 0.05 \) from the other dynamic memory networks and \(p = 0.001 \) from the CNN and RCNN baselines. The differences of the segmentation performances were also significant (\(p < 0.001 \)) in both metrics without exception.

Figure 6 presents a heat map of the update gate \(z^i_j \) values in the cross-slot interaction model for each pair of memory slots and predicted labels. These slot-label correlations indicate that multiple memory slots are involved together in predicting a single label. And each label is associated with

<table>
<thead>
<tr>
<th>Models</th>
<th>Sequential Labelling</th>
<th>Segmentation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(P)</td>
<td>(R)</td>
</tr>
<tr>
<td>CNN (Kim, Banchs, and Li 2016)</td>
<td>0.6691</td>
<td>0.6861</td>
</tr>
<tr>
<td>RCNN with vanilla RNNs</td>
<td>0.6825</td>
<td>0.6572</td>
</tr>
<tr>
<td>RCNN with GRUs</td>
<td>0.6936</td>
<td>0.6826</td>
</tr>
<tr>
<td>Memories with a single gate</td>
<td>0.6877</td>
<td>0.7105</td>
</tr>
<tr>
<td>Memories with reset and update gates</td>
<td>0.6959</td>
<td>0.7035</td>
</tr>
<tr>
<td>Memories with cross slot interactions</td>
<td>0.7008</td>
<td>0.7090</td>
</tr>
</tbody>
</table>

Table 2: Comparisons of the topic tracking performances with different models on TourSG dialogues. The higher precision (\(P \)), recall (\(R \)), and F-measure (\(F \)) scores the better results in sequential labelling, while the lower \(P_k \) and WindowDiff (WD) values the more accurate segmentations. The best score for each metric is highlighted in bold face with or without the indicator † of its statistical significance to the second-best result at \(p < 0.05 \) and \(p < 0.01 \), respectively.

Metrics

The evaluations were performed on two major criteria. The first one is the sequential labelling performances evaluated with precision, recall, and F-measure of the predictions as they are compared to the gold standard annotations encoded also with the B/I/O tagging scheme.

The other metrics focus only on the segmentation capabilities of the topic tracking models on the binary label converted from every predicted or reference label \(y_t \) as follows:

\[
y_t^i = \begin{cases}
0 & \text{if } (y_t = 'I-'c') \text{ and } y_{t-1} = 'B-'c') \\
0 & \text{or } (y_t = 'I-'c') \text{ and } y_{t-1} = 'I-'c') \\
1 & \text{or } (y_t = 'O') \text{ and } y_{t-1} = 'O'), \quad (14)
\end{cases}
\]

The boundary detection performances were evaluated with \(P_k \) (Beeferman, Berger, and Lafferty 1999) and WindowDiff (Pevzner and Hearst 2002), which are widely used metrics in segmentation that slide a fixed-size window through the reference and predicted sequences of segmentation boundaries and count the number of windows with mismatched boundaries for computing the scores. We set the window size \(k = 3 \) which is half of the average length of the reference segments in the test set.

Then, the statistical significance for each pair of models was computed using approximate randomization (Yeh 2000) for every metric.
a particular set of slots which differs from other labels. As expected, the memory states are more dynamically updated at the beginning of each segment than the others inside.

Figure 7 shows the distributions of the errors generated by three models each of which reported the best results from its corresponding architecture family. Following the error analysis in (Kim, Banchs, and Li 2016), each erroneous prediction was categorized into the following four error types:

- Missing predictions: when the reference belongs to one of the labels other than ‘O’, but the model predicts it as ‘O’.
- Extraneous labelling: when the reference belongs to ‘O’, but the model predicts it as another label.
- Wrong categorizations: when the reference belongs to a category other than ‘O’, but the model predicts it as another wrong category.
- Wrong boundary detections: when the model outputs the correct category, but with a wrong prediction from ‘B’ to ‘I’ or from ‘I’ to ‘B’.

The distributions indicate that the reduced numbers of wrong categories were the decisive factor in performance improvements by the recurrent architectures in RCNN and dynamic memory networks compared to the CNN baseline. In addition, the difference in missing predictions shows that the dynamic memories have the better capabilities than RCNN in distinguishing between ‘O’ and the other positive labels.

Conclusions

This paper presented dynamic memory networks for dialogue topic tracking with three different gating mechanisms. The architectures were designed to learn the subject-specific long-term dependencies in dialogue sequences by updating multiple memory slots each of which corresponds to the state representation of a latent subject. Experimental results showed that the proposed approaches contributed to improve both the sequential labelling and segmentation performance with respect to the CNN and RCNN baselines.

The main hypothesis that the proposed dynamic memory networks are capable of representing better dialogue states of human conversations with multiple topics has been proven for the dialogue topic tracking task in this work. Our next step is exploring the models also for the multi-topic state tracking task (Kim et al. 2016) which aims at slot filling with more details about each subject in focus besides the topic category.

The other direction of our future work is to investigate the effective and efficient ways of incorporating external knowledge into the dialogue tracking models. Since many parts of human conversations have a high level of dependence on the domain knowledge that is not explicitly mentioned by the participants, we believe that what and how to leverage useful external resources will be a key to further advancement of dialogue topic and state tracking technologies.

References

