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Abstract
This paper presents an end-to-end solution for the goal-oriented
dialog system task in Dialog System Technology Challenges 6
(DSTC6). The challenge consists in learning a dialog policy
from a given restaurant booking domain. End-to-end models
are required to reason over dialog entities and to track the di-
alog states. Hence, we introduce a practical entity-value inde-
pendent framework based on Recurrent Entity Networks. The
framework is able to abstract linguistic entity by using a delex-
icalization mechanism, which improves the original model per-
formance especially in test sets with out-of-vocabulary entities.
Recurrent Entity Networks also plays an important role to rep-
resent the latent dialog state and the dialog policy. As shown in
experiments, our framework can achieve a promising average
Precision-1 of 96.56% in all the test sets.
Index Terms: Goal-oriented Dialog Systems, Memory Net-
work, Recurrent Entity Networks, Delexicalization, Natural
Language Processing

1. Introduction
Goal-oriented dialog requires skills more than language mod-
elling, e.g., understanding user request, asking for clarification,
properly issuing API calls, querying knowledge base (KB) and
interpreting query results. Traditionally, these dialog systems
have been built as a pipeline, with modules for language un-
derstanding, state tracking, action selection, and language gen-
eration [1, 2, 3, 4, 5]. Even though those systems are known
to be stable via combining domain-specific knowledge and slot-
filling technique, they have limited ability to generalize into new
domains and the dependencies between modules are quite com-
plex.

On the other hand, end-to-end approaches train model di-
rectly on text transcripts of dialogs, and learn a distributed vec-
tor representation of the dialog state automatically [6, 7, 8, 9].
In this way, models make no assumption on dialog state struc-
ture, holding the advantage of easily scaling up. Specifically,
using recurrent neural networks (RNNs) is an attractive solu-
tion, where the latent memory of an RNN represents the dialog
state. However, the hidden states (memories) may be inher-
ently unstable over long time sequences. Several RNN struc-
tures have been proposed to overcome the problem [10, 11, 12],
where the models are designed to represent long-term memo-
ries through global memory cells or gated functions. Highly
related to our work, Recurrent Entity Networks [12] with dy-
namic long-term memory blocks have been demonstrated to
have promising performance on reasoning and language under-
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Table 1: Dialog example of task 1 (Issue API call)

Utterance in Dialog
U May I have a table for four in paris,

with a romantic atmosphere and moderate price
S I’m on it
U <silence >
S Any preference on a type of cuisine
U My friend wants british, let’s do that
S Ok let me look into some options for you
U <silence >
Candidates:
1. whenever you’re ready
2. api call british paris four moderate romantic
...
11. api call british london four moderate romantic
Answer: api call british paris four moderate romantic

standing, which are also essential abilities for goal-oriented di-
alog learning.

In DSTC6 track 1 [13], end-to-end goal-oriented dialog
learning tasks, we present a practical entity-value independent
framework based on Recurrent Entity Network and a recorded
delexicalization mechanism. The former can be seen as a bank
of gated RNNs which all sharing the same parameter but dis-
tinct memory slots. The latter not only decreases the learning
complexity but also makes our system scalable into new out-
of-vocabulary (OOV) KB. We first introduce the dialog tasks in
DSTC6 (Section 2) and outline the key methodologies we used
(Section 3). Then the model settings, training details and the
obtained results are showed (Section 4).

2. Task Description
The DSTC6 organizers expanded the original bAbI Dialog [14]
dataset by using the same simulator. The challenge requires
solving five tasks, each of which is corresponding to a partic-
ular dialog system ability such as issuing API calls, updating
API calls, displaying options, providing extra information and
conducting full dialogs. For training set, each task includes 10k
dialogs, each of which has its corresponding system response
candidates and the correct answer. An example of issuing API
call is shown in Table 1.

The task requires to rank the candidates and will evaluate
the model’s performance by using Precisions 1,2,5 over four
different test sets (with 1k samples each). Each test set includes
the five different tasks mentioned. The test set 1 uses the same
KB of the training set, instead test set 2 uses a new KB which



Figure 1: Entity-Value Independent Recurrent Entity Network for goal-oriented dialog. The image on top right shows the detailed
memory block.

includes out-of-vocabulary (OOV) words. The test set 3 and
4 are required to fill an additional slot for the queries, but the
former uses the same training KB and the latter uses the new
KB. A more detailed description can be found in the article [13].

3. Model Description
Our framework is mainly made of two components: Recur-
rent Entity Network (REN) [12] and Recorded Delexicalization
(RDL). The key improvement is given by the RDL, where the
similar intuition can be found in other models [7, 8]. RDL de-
creases the learning complexity in particular while using REN,
which is an excellent model for reasoning over abstract enti-
ties. Thus, REN outputs the next dialog utterance by choosing
among action templates. The last step, lexicalization, simply re-
place delexicalized elements in action template with plain text
based on a lookup table. The details are described below.

3.1. Recorded Delexicalization

We utilize existing KB information to extract entities from
both user and system utterances. In restaurant domain, we ex-
tract nine entity types including [NAME, LOCATION, PRICE,
PHONE, CUISINE, ATMOSPHERE, RESTRICTIONS, NUM-
BER, ADDRESS] using simple string matching. For example,
we recognize Bombay, Rome, London, Paris and Madrid as lo-
cation based on the KB information. However, we keep the
real number of [RATING] in the utterances and let the REN to
sort restaurant ranks. Then we replace each real entity value
with its entity type and the order appearance in the dialog, and
we also build a lookup table to record the mapping. For ex-
ample, the first user utterance in Figure 1, “book a table in
Madrid for two”, will be transformed into “book a table in
[LOC1] for [NUM1]”. At the same time, [LOC1] and [NUM1]
are stored in a lookup table as Madrid and two, respectively.
At last, we build the action templates act by all the possible
delexicalization system responses. Note that the action template
can always return to a plain response by the inverse of RDL.
For example, the output action template in Figure 1, “api call
[LOC1][NUM1][ATTM1]”, will be lexicalized into “api call
Madrid two casual”. One can consider RDL as an easy method
of name entity recognition that only recognizes the entities de-
fined in the KB and also take their order in dialog into account.

3.2. Recurrent Entity Network

The Recurrent Entity Network has three main components: In-
put Encoder, Dynamic Memory, and Output Module. Let’s de-
fine the training data as a set of tuples {(xi, yi)}ni=1, with n
equal to the sample size, where: xi is a tuple (D, q) where
D = {s1, . . . , st−1} is the dialog history without the last sen-
tence, and q = st the last dialog sentence representing the
“question”. Instead, yi is an action template (a possible system
utterance) that represents the answer.

The Input Encoder transforms the set of words of a sentence
st and the question q into a single vector representation by us-
ing a multiplicative mask. We define E ∈ R|V |×d the embed-
ding matrix, i.e., E(w) = e ∈ Rd, where d is the embedding
size and V the vocabulary size. Hence, {ei}i∈st are the word
embedding of each word in the sentence st and {ek}k∈q the
embedding of the question’s words. The multiplicative masks
for the dialog sentences are defined as f (s) = {f (s)

i }i∈st and
f (q) = {f (q)

k }k∈q for the question, where each fi ∈ Rd. The
encoded vector of a sentence is defined as:

st =
∑
r

er � f (s)
r q =

∑
r

er � f (q)
r

The Dynamic Memory stores information of entities present
in D. This module is very similar to a Gated Recurrent Unit
(GRU) [16] with a hidden state divided into blocks. Moreover,
each block ideally represents an entity (i.e. LOC, PRICE etc.),
and it stores relevant facts about it. Each block i is made of a
hidden state hi ∈ Rd and a key ki ∈ Rd. The dynamic memory
module is made of a set of blocks, which can be represent with
a set of hidden states {h1, . . . , hz} and their correspondent set
of keys {k1, . . . , kz}. The equation used to update a generic
block i are the following:

g
(t)
i =σ(sTt h

(t−1)
i + sTt k

(t−1)
i ) (Gate Func.)

ĥ
(t)
i =ReLU(Uh
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h
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where σ represents the sigmoid function, and ReLU is the Rec-
tified Linear unit [17]. g

(t)
i is the gating function which de-



Table 2: Average Precisions 1 among all the tasks and test sets of the 5 model settings.

Models Precision@1 Precision@2 Precision@5
REN + RDL .9576 .9734 .9911

REN + RDL + INFO .9586 .9734 .9911
REN + RDL + INFO + POST .9625 .9751 .9914

QDREN [15] + RDL + INFO + POST .9618 .9779 .9983
REN + RDL + INFO + POST + DUMMY .9656 .9765 .9862

termines how much of the ith memory should be updated, and
ĥ
(t)
i is the new candidate value of the memory to be combined

with the existing h(t−1)
i . The matrix U ∈ Rd×d, V ∈ Rd×d,

W ∈ Rd×d are shared among different blocks, and are trained
together with the key vectors.

The Output Module creates a probability distribution over
the memories’ hidden states using the question q. Thus, the
hidden states are summed up, using the probability as weight,
to obtain a single vector representing all the input. Finally, the
network output is obtained by combining the final state with the
question. Let us define R ∈ R|act|×d, H ∈ Rd×d, ŷ ∈ R|act|.
Then, we have

pi =Softmax(qThi)

u =

z∑
j=1

pjhj

ŷ =ReLU(q +Hu)

The model is trained using a cross-entropy loss H(ŷ, y), where
y is the one hot encoding of the correct action template. Note
that ŷ can be viewed as the predicted scores of each action tem-
plates, that is, action template with the higher score is more
likely to be the correct answer. All the parameters, includ-
ing the embedding matrix, are learned using Backpropagation
Through Time (BPTT) algorithm. A schematic representation
of the model is shown in Figure 1.

4. Experiments
4.1. Training Details

For each task, we fix the number of the memory block to 5,
and we used Adam [18] optimizer. The gradient was clipped
to a maximum of 40 to avoid gradient explosion. 10% of train-
ing data is split into validation set. We have implemented an
early stopping method, which stops the training ones the vali-
dation accuracy does not improve for 10 epochs. We try a small
grid search over two hyperparameters such as batch size and
embedding size. Then, the setting that achieved the highest ac-
curacy in validation has been selected for the final evaluation.
We use the ŷ as score distribution to rank our candidates from
1 to 11. In addition, we augment the training data by learning
not only on the original 10k data but also on the partial utter-
ances in dialog history. Namely, every system response appear-
ing in dialog history turns to be our training data. In this way,
we efficiently increase our model performance due to data aug-
mentation. Moreover, if the INFO feature in [14] is added, then
speaker and temporal information are considered. For example,
the second utterance in Table 1 will be “$S #2 I’m on it” under
this setting.

4.2. Prediction Methods

During the prediction step, we face difficulties in the test set
3 and 4, which includes an additional slot that our model has
never seen before. That is, those test sets include some candi-
dates that never appear in our original action templates, and it is
hard to evaluate their scores. To overcome this problem, we use
a matching mechanism to find the most “similar” action tem-
plate for the unfamiliar candidate. We simply compare the un-
familiar candidate word-by-word to each action template in act,
then we find out the action template with the highest positional
word matching, i.e., the one that looks more similar. For exam-
ple, if “api call [LOC2][NUM2][ATTM4][UNK1]” is a candi-
date not defined in act, then the matching action template is go-
ing to be “api call [LOC2][NUM2][ATTM4]”. Hence, we can
rank this candidate based on the score of the matching action
template.

However, one main drawback of the matching mechanism
is that it assumes all the candidates are possible system re-
sponses since every unfamiliar candidate will be matched to one
action template, even if those candidates are obviously user’s
utterances. Therefore, the DUMMY method adds all user utter-
ances into act as dummy action templates. In this way, the un-
familiar candidate that is similar to user utterances may match
to one of those dummy action templates, which is never consid-
ered as the right answer during training process. That is, it has
a low score to become the correct response.

On the other hand, sometimes we may have the same score
among candidates, which is possible because several unfamiliar
candidates may match to the same action template. Here, we
use the POST method if the only difference between those can-
didates is the additional slot. Based on our lookup table, we give
a higher score to the candidate with latest slot value. For exam-
ple, if both “api call [LOC2][NUM2][ATTM4][UNK1]” and
“api call [LOC2][NUM2][ATTM4][UNK2]” are in the candi-
dates, we prefer to choose the latter because [UNK2] appears
after [UNK1].

4.3. Results

The results of the 5 different settings1 are summarized in Ta-
ble 2. As we can see, the best model (REN + RDL + INFO
+ POST + DUMMY) achieves an average test Precision 1 of
96.56%. The other 4 settings are very close to the best one, with
a margin less than 1%. Therefore, we can draw the following
conclusions: (1) using temporal and user information (INFO)
is not particularly useful for the REN since it already includes
temporal dynamics by construction; (2) the post-processing step
(POST) helps quite a lot (particularly for test set 3 and 4)2 in or-
der to match the correct API call with the additional slot; (3)
QDREN model [15], which has the same architecture as REN
but uses the last sentence in the memorization process, shows a

1The official evaluation is limited to 5 different settings.
2The precision of each test set is not showed due to the space limit



Table 3: Precisions 1,2,5 of the our REN model with RDL +
INFO + POST + DUMMY.

Task
T1 T2 T3 T4 T5 Avg.

Test1
@1
@2
@5

.983

.992

.999

.949

.981

.996

.998
1.0
1.0

.999
1.0
1.0

.986
1.0
1.0

.983

.995

.999

Test2
@1
@2
@5

.974

.992
1.0

.958

.983

.996

1.0
1.0
1.0

.999
1.0
1.0

.991

.999
1.0

.984

.995

.999

Test3
@1
@2
@5

.812

.846

.899

.967

.984

.995

.999
1.0
1.0

1.0
1.0
1.0

.950

.959

.967

.946

.958

.972

Test4
@1
@2
@5

.837

.859

.909

.96
.976
.996

.999
1.0
1.0

.998
1.0
1.0

.953

.959

.966

.949

.959

.974

Avg.
@1
@2
@5

.901

.922

.952

.956

.981

.996

.999
1.0
1.0

.999
1.0
1.0

.970

.979

.983

more robust result and achieves the best Precision 2 and 5; (4)
adding dummy user utterances in act (DUMMY) helps to se-
lect the correct system answer among the 11 candidates to rank.
Our code is available here3.

Furthermore, we report the detailed precisions of our best
model in Table 3. Here we can notice that the average Preci-
sion 1 of the test set 3 and 4 is about 3.6% lower compared to
test set 1 and 2. The precision drops especially in task 1, which
is required to fill an additional slot. For instance, if a dialog
system needs one more slot information about user’s dietary re-
strictions, our model has limited ability to output the response
“do you have any dietary restrictions”. Instead, the response
“ok let me look into some options for you” will score the high-
est because it is the correct response in our training data.

On the other hand, our model can handle well task 3 and
4 (i.e. recommending a restaurant and providing additional in-
formation) in all the test sets, where the average Precision 1 is
99.9%. This is largely due to the combination of REN and the
RDL. Indeed, those tasks require focussing on particular enti-
ties in the input. By abstracting such entities, REN can focus on
the correct abstract type.

4.4. Analysis

To better understand the REN behavior, we visualize the gat-
ing activation function in Figure 2. The output of this func-
tion decides how much and what we store in each memory cell.
Moreover, we take the model trained on task 4 (i.e. providing
additional information) for the visualization. We plot the acti-
vation matrix of the gate function and observe how REN learns
to store relevant information.

As we can see in the figure, the model tries to open the
memory gate once a useful information appears as input, and
close the gate for other useless sentences. Different memory
blocks may focus on different information. For examples, block
5 stores more information from the discourse rather than ex-
plicit KB knowledge; block 2 open its gate fully when the ad-
dress and rating information is provided. In this case, the last
user utterance (question) is “can you provide address”, we can
get the correct prediction because the latent address feature is

3https://github.com/jasonwu0731/RecurrentEntityNetwork

1 2 3 4 5

[NAME1] cuisine [CUI1]

[NAME1] number [NUM1]

[NAME1] location [LOC1]

[NAME1] restrictions [NAME1]

[NAME1] phone [PHO1]

[NAME1] atmosphere [ATM1]

[NAME1] address [ADD1]

[NAME1] price [PRI1]

[NAME1] rating 44

hello

hello what can i help you with today

can you make restaurant reservation at [NAME1]

great let me do reservation

what is phone number of restaurant

here it is [PHO1]

can you provide address

Figure 2: Heatmap representing the gating function result for
each memory block. The x-axis represents the memory block
number, and in the y-axes, there are the utterances in the dialog
divided into time steps, and at the top, there is the last user’s
utterance. Darker color means a gate more open (values close
to 1) and lighter colour means the gate less open.

represented in those memory blocks that open during the utter-
ance “[NAME1] address [ADD1]”.

5. Conclusion
In this paper, we showed the effectiveness of Recurrent En-
tity Network in modelling goal-oriented dialogs by using the
DSTC6 dataset. Especially, this architecture performs well in
combination with the recorded delexicalization mechanism and
several simple prediction methods. REN shows an excellent
ability to reason over entities, and the RDL highly reduces
learning complexity and alleviates OOV problems. The aver-
age Precision-1 achieved by our model in all the test sets is
promising (96.56%), but still, other competitors achieved 100%
accuracy. However, we would like to highlight that our model
is as end-to-end as possible, holding the promise of scaling up
easily. Our future work is to design a more domain-general
framework that can not only handle additional slots but also the
out-of-domain setting.
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